skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Montgomery, Jacob M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We investigate whether election results are associated with emotional reactions among voters across democracies and under what conditions these responses are more intense. Building on recent work in comparative politics, we theorize that emotional intensity is stronger after elections involving populist candidates and highly polarized parties. We test these expectations with a big-data analysis of emotional reactions on parties’ Facebook posts during 29 presidential elections in 26 democracies. The results show that ideological polarization of political parties might intensify emotional reactions, but there is no clear relationship with the presence of populist candidates. 
    more » « less
    Free, publicly-accessible full text available June 27, 2026
  2. Abstract We present a hierarchical Dirichlet regression model with Gaussian process priors that enables accurate and well-calibrated forecasts for U.S. Senate elections at varying time horizons. This Bayesian model provides a balance between predictions based on time-dependent opinion polls and those made based on fundamentals. It also provides uncertainty estimates that arise naturally from historical data on elections and polls. Experiments show that our model is highly accurate and has a well calibrated coverage rate for vote share predictions at various forecasting horizons. We validate the model with a retrospective forecast of the 2018 cycle as well as a true out-of-sample forecast for 2020. We show that our approach achieves state-of-the art accuracy and coverage despite relying on few covariates. 
    more » « less
  3. Abstract Topic models, as developed in computer science, are effective tools for exploring and summarizing large document collections. When applied in social science research, however, they are commonly used for measurement, a task that requires careful validation to ensure that the model outputs actually capture the desired concept of interest. In this paper, we review current practices for topic validation in the field and show that extensive model validation is increasingly rare, or at least not systematically reported in papers and appendices. To supplement current practices, we refine an existing crowd-sourcing method by Chang and coauthors for validating topic quality and go on to create new procedures for validating conceptual labels provided by the researcher. We illustrate our method with an analysis of Facebook posts by U.S. Senators and provide software and guidance for researchers wishing to validate their own topic models. While tailored, case-specific validation exercises will always be best, we aim to improve standard practices by providing a general-purpose tool to validate topics as measures. 
    more » « less